
Correlated metals and the LDA+U method

I. I. Mazin and A. G. Petukhov∗
Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375

L. Chioncel and A. I. Lichtenstein
University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands

(Dated: 27 June 2002; revised 17 December 2002)

While LDA+U method is well established for strongly correlated materials with well localized
orbitals, its application to weakly correlated metals is questionable. By extending the LDA Stoner
approach onto LDA+U, we show that LDA+U enhances the Stoner factor, while reducing the
density of states. Arguably the most important correlation effects in metals, fluctuation-induced
mass renormalization and suppression of the Stoner factor, are missing from LDA+U. On the other
hand, for moderately correlated metals LDA+U may be useful. With this in mind, we derive a new
version of LDA+U that is consistent with the Hohenberg-Kohn theorem and can be formulated as a
constrained density functional theory. We illustrate all of the above on concrete examples, including
the controversial case of magnetism in FeAl.

PACS numbers: 71.15.-m, 71.15.Mb, 71.20.Be, 71.20.Eh, 75.10.Lp

One of the most influential, from practical point of
view, developments in the Density Functional Theory
(DFT) in the last two decades was the LDA+U method
(see, e.g., Ref. [1]). This method includes the orbital
dependence of the self-energy operators, missing from
the Kohn-Sham potential, in a relatively crude, pseudo-
atomic way, neglecting the fine details of the spatial vari-
ations of the Coulomb potential. On the contrary, the
standard Local Density Approximation, LDA accounts
for the spatial variation of the Hartree potential exceed-
ingly well, but neglects the orbital dependence of the
Coulomb interaction.

There is one inherent ambiguity in the LDA+U
method: In LDA, all electron-electron interactions have
already been taken into account in a mean field way.
The Hubbard Hamiltonian that represents the underlying
physics of the LDA+U method also incorporates a large
part of the total Coulomb energy of the system. Sim-
ple combination of the LDA and Hubbard Hamiltonian
thus leads to a double counting (DC) of the Coulomb en-
ergy, so one may want to identify those parts of the DFT
expression for the total energy that correspond to the in-
teraction included in the Hubbard Hamiltonian and sub-
tract them. However, since the DFT Hamiltonian is writ-
ten in terms of the total density, and the Hubbard Hamil-
tonian in the orbital representation, one cannot build a
direct link between the two. Second, even if it were pos-
sible, that would be undesirable. Spatial variation of the
Hartree and the exchange-correlation potentials is very
important. It would be unreasonable to subtract that
out just because it has been already taken into account
elsewhere in a primitive way (roughly speaking, UN2/2).
Rather, one wants to identify the mean-field part of the
Hubbard Hamiltonian, and subtract that, leaving only a
correction to the LDA-type mean field solution.

This is not a uniquely defined procedure. Several

recipes exist, and it has been appreciated lately [2] that
the results of LDA+U calculations may depend crucially
on the choice of the DC recipe. It should be noticed
that while for strongly correlated systems the LDA+U
ideology is at least practically established, in a relatively
new area of applying LDA+U to moderately-correlated,
metallic systems [2–4], the situation is very far from clear.

In this Letter we analyze the effect of different DC pre-
scription on the LDA+U results in correlated metals. We
also present a systematic approach to the DC problem, of
which the existing recipes are special cases. Finally, we
discuss which problems associated with this class of ma-
terials can, in principle, be solved within LDA+U, and
which cannot.

We use for our analysis the spherically averaged form
of the rotationally-invariant LDA+U [5], due to Dudarev
et al. [6]:
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where U and J are spherically averaged Hubbard re-
pulsion and intraatomic exchange for electrons with the
given angular momentum l, nmσ is the occupation num-
ber of the m-th orbital, σ = ±1 is the spin index, and
the superscript 0 means that the double counting terms
have not been subtracted yet. Here ρσmm′ is the orbital
occupation matrix, Nσ = Tr(ρσ) and N =

∑
σ Nσ.

To subtract from Eq. (1) the DC term, one naturally
starts with the first two terms in Eq. (1), i.e., the Hartree
and the Stoner energies. Both are explicit functionals of
the spin density, and are likely to be better described
by LDA. To identify the DC part of the last term of
the Eq. (1), which explicitely depends on nmσ, is less
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trivial; one needs to work out a “mean field” approxima-
tion to this term, that is, substitute Tr(ρσ · ρσ) by some
quantity xσ that depends solely on total spin density.
Czyżyk and Sawatzky [7] suggested that xσ should be
equal to Tr(ρσ ·ρσ) in the limit of the uniform occupancy,
ρσ,LDAmm′ = δmm′nσ, and, consequently, xσ = (2l + 1)n2

σ,
where nσ = Nσ/(2l+ 1). This leads to the following cor-
rections to the total energy and the effective potential:
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LDA+U (mm′σ) = −(U − J) (ρσmm′ − nσδmm′) .(2)

Here AMF stands for “Around Mean Field” [7] and
δρσmm′ = ρσmm′ − nσδmm′ .

For strongly correlated systems the limit of the uni-
form occupancy is not correct (in fact, it is not correct
even in weakly correlated systems, due to the crystal
field). Thus, it is not surprising that for the systems with
strongly localized electrons the AMF functional leads to
rather unrealistic results. This observation led [7, 8] to
another prescription, xσ = (2l + 1)nσ,
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which produces the correct behavior in the fully localized
limit (FLL) where nmσ = 0 or 1. Most of the modern
LDA+U calculations utilize one of these two functionals,
although in real materials the occupation numbers lie
between these two limits.

In the AMF the LDA+U correction to the electronic
potential, Eq. 2, averaged over all occupied states, is zero.
This is a possible way to define a mean field (cf. the
Slater approximation to the Fock potential), but not the
way used in the DFT. The latter is a mean field theory
that produces the correct total energy, not the correct
average potential. AMF and FLL represent the “DFT”
mean field if all occupation numbers are all the same,
or are all 0 or 1, respectively. It is easy to show that
(2l + 1)n2

σ ≤ Tr(ρσ · ρσ) ≤ (2l + 1)nσ, so that AMF
always gives a negative, and FLL a positive correction to
the total energy, while the right (in the DFT sense) recipe
should give zero correction to the total energy. That
can be achieved by using a linear interpolation between
the two extremes corresponding to AMF and FLL, xσ =
(2l + 1)

(
αnσ + (1− α)n2

σ

)
, where 0 ≤ α ≤ 1, and
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In the spirit of the DFT, ∆EDFTLDA+U =0, so
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σ Tr(δρσ · δρσ)

(2l + 1)
∑
σ nσ(1− nσ)

(5)

We emphasize that α is not adjustable, nor is it a for-
mal functional of the charge density, but it is a material-
dependent parameter (like, say, U itself), defined by the
self-consistent occupation matrix. However, in practical
calculations it is better to recompute α after each iter-
ation, as the current value of ρσmm′ changes. Note that
the total energy is given by the regular LDA expression
that only implicitly depends on U and J via the chang-
ing density distribution; it is variational with respect to
the charge density at a fixed α, but not variational with
respect to α itself. The fact that this prescription is de-
rived according to the DFT ideology allows one to formu-
late the proposed LDA+U functional (unlike the existing
LDA+U functionals) as a constrained DFT theory [9] at
a given α, with the constraint given by Eq. (5). (U−J)/2
appears then as a Lagrange multiplier.

We have tested the proposed functional (4) on NiO,
a prototypical compound for LDA+U calculations (see,
e.g., [10]). Fig. 1 shows the band gap and the mangetic
moment of NiO as a function of U at J = 0.95 eV for
three different functionals (Eqs. 2, 3, and 4), calculated
within the linear-muffin-tin orbital (LMTO) method in
the atomic sphere approximation (ASA). The parameter
α ' 0.5 is almost independent on U . Accordingly, the
results of our calculations based on Eq. 4 for both band
gaps and magnetic moments lie right between those for
AMF and FLL calculations, and the effect of U is re-
duced compared to the FLL calculations. This is in ac-
cord with a known observation [10] that in NiO the FLL
LDA+U gives the best agreement with the experiment
for U <∼6 eV, smaller than U ' 8 eV calculated from the
first principles[10, 11].
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FIG. 1: Mott-Hubbard band gaps, and magnetic moments of
antiferromagnetic NiO for three flafors of LDA+U. The upper
and lower values of the “error bars” correspond to the FLL
and AMF functionals, respectively.
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Our next example is a weakly correlated metal FeAl.
This paramagnetic material has attracted attention due
to a recent suggestion by Mohn et al. [2] that the short-
range Coulomb correlations within the LDA+U may be
responsible for suppression of ferromagnetism found in all
LDA calculations. More specifically, they found in their
AMF LDA+U calculations a reduction of the density of
states (DOS) at the Fermi level, DF , which was sufficient
to make the Stoner criterion smaller than 1 and stabilize
the paramagnetic state. To analyze this result, it is im-
portant to revisit the Stoner theory for the LDA+U case.

In DFT, the Stoner parameter I is defined as I =
−2∂2Exc/∂M

2, the second derivative of the exchage-
correlation energy with respect to the total magnetic mo-
ment. The paramagnetic ground state is unstable when
DF I ≥ 1. This can be derived from the force theorem,
which states that the total energy for small magnetiza-
tions can be computed by assuming a rigid shift of the
bands by b = ±M/2DF , so that the gain in the inter-
action energy, −IM2/4, competes with the loss in the
one-electron energy, M2/4DF . In the LDA+U the crite-
rion holds, but the product DF I changes, not only be-
cause DF changes, but also because the newly added
interaction energy depends on M . Indeed, the force
theorem calls for a change δρσmm′ = bσDmm′ , where
Dmm′ = −π−1Im Gmm′(EF ). When applied to the func-
tionals Eq. (2) - Eq. (4), it generates a change in the
interaction energy, which results in an additional contri-
bution to the Stoner parameter,

∆I(α) = (U − J)
(

Tr(D ·D)− (1− α)(TrD)2

(2l + 1)D2
F

)
(6)

In the limit of the uniform occupancy, Eq. (6) for the
FLL case (α = 1) reduces to (U − J)/(2l + 1). Given
that the LDA Stoner parameter, I, is of the same order
as J, we obtain for the total Stoner parameter IFLL ≈
(U + 2lJ)/(2l + 1), which the well known expression for
the Stoner factor in the atomic Hubbard model. On the
contrary, ∆IAMF (α = 0) in this limit is zero. In real
metals Dmm′ is complicated due to crystal field effects.
Let us consider, for illustration, d-electrons in a cubic
environment, and introduce the difference ∆D = Deg −
Dt2g, where Deg and Dt2g are eg and t2g DOS per orbital
at EF , as a measure of the crystal field. This gives rise
to a contribution to ∆IAMF = 5

24 (U − J)(∆D/DF )2.
However, when LDA+U reduces DF , and ∆IAMF is not
large enough to overcome the decrease in DF , LDA+U
may stabilize the paramagnetic state(cf. Ref. [12]), as,
for instance, observed in a very narrow range of large U ’s
for FeAl by Mohn et al. [2] (of course, only in the AMF
functional; the FLL functional produces a large ∆I ≈
(U−J)/5, always increasing the tendency to magnetism).

With this in mind, we performed LMTO-ASA cal-
culations for all three LDA+U functionals, using fixed
J = 0.95 eV. The results for U -dependence of the mag-
netic moment and α are shown in Fig. 2 and compared

with those by Mohn et al. [2]. In our AMF calculations
we also found a paramagnetic solution for U = 4.85 eV,
which however coexsits with a ferromagnetic high spin so-
lution (Fig. 2). Note that for well localized orbitals there
is no difference whether the (U − J) term is applied in-
side the atomic sphere or only inside the MT sphere, as
in Ref. [2]; however, in less localized cases, where a no-
ticeable part of the d-orbitals spills out of the MT sphere,
the effect of the same U is smaller when applied only in-
side the MT sphere. One can see in Fig. 2 that, indeed,
our calculations with large U yield large α’s and agree
very well with Ref. [2], while for small U (small α) the
effect of U in our ASA calculations is stronger than in
Ref. [2].
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FIG. 2: Magnetic moments of FeAl for AMF and DFT flavors
of LDA+U compared with the results of Mohn et al. (Ref. [2])

All LDA+U functionals shift unoccupied bands up
and occupied bands down. Therefore LDA+U broad-
ens the bands crossing the Fermi level. Because of this
broadening, in FeAl for small U the parameter α is ini-
tially decreasing (Fig. 2) with a minimum α = 0.05
at U = 2 eV. The magnetic moment also decreases
in this region. At larger U, α starts growing again.
At this point it is instructive to apply the logic of the
constrained LDA approach in which for every fixed α
the total LDA energy is minimized under the constraint∑
σ Tr(δρσ ·δρσ)/[(2l+1)

∑
σ nσ(1−nσ)] = α, (U−J)/2

being the Lagrange multiplier. For α ≤ 0.087 (Fig. 2)
of the two possible solutions with U < 2 eV and U > 2
eV we should choose the one with lower energy (smaller
U). As a result, we find two admissible domains for U :
an AMF-like with U < 2 eV and a FLL-like with U >∼ 5
eV. The latter is clearly unphysical. Both solutions are
ferromagnetic. The solutions with intermediate values of
U and reduced magnetic moments are inadmissible in the
framework of the constraint DFT formulation.

On the contrary, our explanation of the paramagnetism
in FeAl is that the ferromagnetism instability is sup-
pressed by the critical spin fluctuations. There are many
other systems for which the fluctuations in the vicinity
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of a quantum critical point reduce the tendency to mag-
netism. Further examples include Sr3Ru2O7 (MLDA ≈
0.8 µB , Mexp = 0), ZrZn2 (MLDA ≈ 0.7 µB , Mexp = 0.2
µB), and other. The physics that is missing from both
LDA and LDA+U equations in such systems can be
described as exchange of virtual electronic excitations,
roughly speaking, plasmons or (para)magnons. This
leads to “dressing” of the one-particle excitations in the
same way as the electron-phonon coupling “dresses” elec-
trons near the Fermi surface, although in a correlated
metal such mass renormalization effects occur on a large
energy scale (of the order of U or J). LDA calcula-
tions cannot reproduce such a dressing, which has been
observed in many different ways experimentally. For
instance, LDA calculations do not explain large mass
renormalizations in Sr2RuO4 [13], and large specific heat
renormalization in many correlated metals, produce too
large plasma frequencies, e.g., in YBa2Cu3O7, yield an
optical absorption spectrum in CrO2 shifted by about
20% to higher frequency, as compared with experiment
[14], and overestimate the exchange splitting in Ni by a
factor of 2 [15]. In all these cases the total width of the
d-bands is decreased, as opposed to broadening inherent
to LDA+U. Here the essential physics is missing from the
LDA+U as well as in LDA, while the spatial variation of
the mean-field Coulomb interaction is treated better by
the LDA. The missing physics is associated, to a large
degree, with dynamic fluctuations.

The dynamic version of the LDA+U method, the Dy-
namic Mean Field Theory (DMFT) [16], which can ac-
count for some spin fluctuations [17], resolves many of
these problems. For instance, the mass renormalization
in Sr2RuO4 is 3-4 [13], far greater than possible renormal-
ization due to the phonons. We applied all three flavor
of LDA+U to Sr2RuO4 and found no mass renormaliza-
tion compared to LDA. On the other hand, Eliashberg-
type calculations [18] of the renormalization due to spin
fluctuations, using a spectrum deduced from the LDA
band structure, give mass renormalizations of the right
order. Similarly, DMFT explicitely narrows the bands
in Sr2RuO4 and enhances the electronic mass [19]. With
this in mind, we applied the DMFT with a realistic U = 2
eV to FeAl and found the paramagnetic state to be per-
fectly stable, whith the bands narrower than in LDA,
and the density of states practically the same (Fig. 3).
In other words, the spin fluctuations effectively reduce
the Stoner factor I.

To conclude, we observe that no LDA+U functional
correctly describes the essential physics of the weakly cor-
related metals: (i) reducing the band dispersion by dress-
ing of the one-particle excitation, and (ii) spin fluctua-
tions near the quantum critical point. One functional, la-
beled FLL here, correctly describes the important physics
in the limit of well localized electrons, and can be recom-
mended in this case. The other functional, labeled AMF,
is exact in a hypothetical material with the uniform or-
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FIG. 3: FeAl density of states, D(E), in DMFT (solid line)
compared with the nonmagnetic LDA. The DMFT solution
is stable, the LDA is not (a ferromagnetic solution is stable),
despite the same D(EF ).

bital occupancies. Although neither functional accounts
for the fluctuation effects, LDA+U may be useful, if ap-
plied with a grain of salt, in moderately correlated met-
als. For this case, we propose a recipe that accounts
for an incomplete localization and reduces to AMF or
FLL in the appropriate limits. Finally, it is worth noting
that in many correlated materials the spin-orbit interac-
tion plays a key role. Since our α does not depend on
spin, this prescription can be also formulated in terms
of the full (4l + 2) × (4l + 2) occupation matrix ρ and
n = Tr(ρ)/(4l + 2). Eq. (5) should be replaced with
Tr(δρ · δρ) = (4l + 2)αn(1 − n). This formulation has
another advantage in the case of a half-filled band, like
in Gd, because in this limit it reduces to more physically
meaningful in this case FLL, rather than to AMF as the
nonrelativistic Eq. (4).
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